Fundamentals of Fans

Speaker: Luke Powell Vice President, Air Equipment Company

April 1, 2015

AIR EQUIPMENT COMPANY DIVISION OF ROBERT HARAGAN, INC.

Overview

- Fan Laws
- Fan Testing
- Different Fan Types
- Bearings
- Construction Requirements
- System Effects Video

Motor In Out Out Housing

AIR EQUIPMENT COMPANY DIVISION OF ROBERT HARAGAN, INC.

These rules are only valid within a fixed system with no change in the aerodynamics or airflow characteristics of the system. For the purpose of this discussion, a system is the combination of ductwork, hoods, filters, grills, collectors, etc., through which air is distributed.

The first fan law relates the airflow rate to the fan rotational speed: Volume flow rate (CFM) is directly proportional to the fan rotational speed (RPM). If the fan RPM is increased, the fan will discharge a greater volume of air in exact proportion to the change in speed.

Fan Laws • CFM = 10,000 • CFM = 12,000 • SP = 2" • SP = • RPM = 1,000 • RPM = • BHP = 10 • BHP =

Fan Laws

- SP = 2" SP =
- BHP = 10 BHP =
- CFM = 10,000 CFM = 12,000
- RPM = 1,000 RPM = 1,200

The second fan law relates the fan total pressure or fan static pressure to the fan rotational speed: Total or static pressure is proportional to the square of the fan rotational speed. If it is desired to increase the flow to 20,000 CFM without any physical change in the system, the required SP would be 4"

Fan Laws • CFM = 10,000 • CFM = 12,000 • SP = 2" • SP = 2.88" • RPM = 1,000 • RPM = 1,200 • BHP = 10 • BHP =

The third fan law relates the total or static air power (and the impeller power), to the fan rotational speed: Power, is proportional to the cube of the fan rotational speed.

Fan Laws

- CFM = 10,000
 SP = 2"
 SP = 2.88"

- BHP = 10 BHP =

- RPM = 1,000 RPM = 1,200

Fan Laws

- CFM = 10,000
 SP = 2
 SP = 2.88"

- RPM = 1,000 RPM = 1,200
- BHP = 10 BHP = 17.3

Fan Testing					
Duct Traverse Formats					
Duct Configuration	ASHRAE Handbook Industrial Ventilation		Manual	AMCA Publication 203	
Rectangular	16 to 64 equal areas, maximum of 6 inches apart	16 to 64 equal areas, ma	ximum of 6 inches apart	24 to 100 equal areas	
Circular	20 equal concentric areas, along 2 diameters			24 to 48 equal concentric areas, along 3 diameters	
$\begin{array}{c} \label{eq:concentric} \\ \hline \\ $				a traverse is usually average velocity. ar the edges or corners, enter. Fig. 4 shows e locations for traversing lar ducts. To determine he duct from the ene calculated individual are roots of the velocity of traverse points should sed duct sizes.	
				EQUIPMENT COMPANY JF ROBERT HARAGAN, INC.	

Bearing Failures					
Common Types of Failures	Common Causes of Failures				
Overheating	Lubrication				
Brinelling	Skidding-Light Loading				
Fretting Corrosion	Loose Shaft Fit				
Fatigue	Bent Shaft				
Misalignment	Set Screws Loosened				
Preventative Maintenance					
Auto-Lubrication Device					
Vibration/Temperature Monitors					
	AIR EQUIPMENT COMPANY DIVISION OF ROBERT HARAGAN, INC				

Motor Position

To determine the location of the motor, face the drive side of the fan and pick the proper motor position designated by the letters W,X,Y, or Z as shown in the drawing to the left.

AIR EQUIPMENT COMPANY DIVISION OF ROBERT HARAGAN, INC.

<section-header><section-header><text><text><text>