## Fundamentals of Fans

Speaker: Luke Powell Vice President, Air Equipment Company

April 1, 2015

AIR EQUIPMENT COMPANY DIVISION OF ROBERT HARAGAN, INC.

### Overview

- Fan Laws
- Fan Testing
- Different Fan Types
- Bearings
- Construction Requirements
- System Effects Video

Motor In Out Housing

### AIR EQUIPMENT COMPANY DIVISION OF ROBERT HARAGAN, INC.



These rules are only valid within a fixed system with no change in the aerodynamics or airflow characteristics of the system. For the purpose of this discussion, a system is the combination of ductwork, hoods, filters, grills, collectors, etc., through which air is distributed.

The first fan law relates the airflow rate to the fan rotational speed: Volume flow rate (CFM) is directly proportional to the fan rotational speed (RPM). If the fan RPM is increased, the fan will discharge a greater volume of air in exact proportion to the change in speed.

# Fan Laws • CFM = 10,000 • CFM = 12,000 • SP = 2" • SP = • RPM = 1,000 • RPM = • BHP = 10 • BHP =

## Fan Laws

- CFM = 10,000 CFM = 12,000
- SP = 2" SP =
- BHP = 10 BHP =

- RPM = 1,000 RPM = 1,200



The second fan law relates the fan total pressure or fan static pressure to the fan rotational speed: Total or static pressure is proportional to the square of the fan rotational speed. If it is desired to increase the flow to 20,000 CFM without any physical change in the system, the required SP would be 4"



## Fan Laws • CFM = 10,000 • CFM = 12,000 • SP = 2" • SP = 2.88" • RPM = 1,000 • RPM = 1,200 • BHP = 10 • BHP =



The third fan law relates the total or static air power (and the impeller power), to the fan rotational speed: Power, is proportional to the cube of the fan rotational speed.

### Fan Laws

- CFM = 10,000
  SP = 2"
  SP = 2.88"

- BHP = 10 BHP =

- RPM = 1,000 RPM = 1,200

### Fan Laws

- CFM = 10,000
  SP = 2
  SP = 2.88"

- RPM = 1,000 RPM = 1,200
- BHP = 10 BHP = 17.3

| Fan Testing                                                                                                                   |                                                                     |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|
| Duct Traverse Formats                                                                                                         |                                                                     |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |  |
| Duct<br>Configuration                                                                                                         | ASHRAE Handbook                                                     | SHRAE Handbook Industrial Ventilation N                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AMCA Publication 203                               |  |
| Rectangular                                                                                                                   | 16 to 64 equal areas, 16 to 64 equal area maximum of 6 inches apart |                                                                                                                       | ximum of 6 inches apart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24 to 100 equal areas                              |  |
| Circular                                                                                                                      | 20 equal concentric areas, along 2 diameters                        | areas, 6 to 12 (small duct), 10 to 20 (medium duct), 20 to 40 (large duct), equal concentric areas, along 2 diameters |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24 to 48 equal concentric areas, along 3 diameters |  |
| Equal Concentric<br>Arrow<br>December 2Pitot Tube Stations Indicated by 0Image: Concentric<br>December 2Image: Concentric<br> |                                                                     |                                                                                                                       | -Since velocity in a duct is seldom uniform<br>across any section, a traverse is usually<br>made to determine average velocity.<br>Velocity is lowest near the edges or corners,<br>and greatest near center. Fig. 4 shows<br>suggested Pitot tube locations for traversing<br>round and rectangular ducts. To determine<br>average velocity in the duct from the<br>readings, average the calculated individual<br>velocities or the square roots of the velocity<br>heads. The number of traverse points should<br>increase with increased duct sizes. |                                                    |  |
|                                                                                                                               |                                                                     |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EQUIPMENT<br>COMPANY<br>DF ROBERT HARAGAN, INC.    |  |

























| Bearing Failures               |                                                             |  |  |  |  |
|--------------------------------|-------------------------------------------------------------|--|--|--|--|
| Common Types of Failures       | Common Causes of Failures                                   |  |  |  |  |
| Overheating                    | Lubrication                                                 |  |  |  |  |
| Brinelling                     | Skidding-Light Loading                                      |  |  |  |  |
| Fretting Corrosion             | Loose Shaft Fit                                             |  |  |  |  |
| Fatigue                        | Bent Shaft                                                  |  |  |  |  |
| Misalignment                   | Set Screws Loosened                                         |  |  |  |  |
| Preventative Maintenance       |                                                             |  |  |  |  |
| Auto-Lubrication Device        |                                                             |  |  |  |  |
| Vibration/Temperature Monitors |                                                             |  |  |  |  |
|                                | AIR EQUIPMENT<br>COMPANY<br>DIVISION OF ROBERT HARAGAN, INC |  |  |  |  |







### **Motor Position**



To determine the location of the motor, face the drive side of the fan and pick the proper motor position designated by the letters W,X,Y, or Z as shown in the drawing to the left.

### AIR EQUIPMENT COMPANY DIVISION OF ROBERT HARAGAN, INC.



























# <section-header><section-header><text><text><text>